If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 35x + -6.5 = 0 Reorder the terms: -6.5 + 35x + 3x2 = 0 Solving -6.5 + 35x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -2.166666667 + 11.66666667x + x2 = 0 Move the constant term to the right: Add '2.166666667' to each side of the equation. -2.166666667 + 11.66666667x + 2.166666667 + x2 = 0 + 2.166666667 Reorder the terms: -2.166666667 + 2.166666667 + 11.66666667x + x2 = 0 + 2.166666667 Combine like terms: -2.166666667 + 2.166666667 = 0.000000000 0.000000000 + 11.66666667x + x2 = 0 + 2.166666667 11.66666667x + x2 = 0 + 2.166666667 Combine like terms: 0 + 2.166666667 = 2.166666667 11.66666667x + x2 = 2.166666667 The x term is 11.66666667x. Take half its coefficient (5.833333335). Square it (34.02777780) and add it to both sides. Add '34.02777780' to each side of the equation. 11.66666667x + 34.02777780 + x2 = 2.166666667 + 34.02777780 Reorder the terms: 34.02777780 + 11.66666667x + x2 = 2.166666667 + 34.02777780 Combine like terms: 2.166666667 + 34.02777780 = 36.194444467 34.02777780 + 11.66666667x + x2 = 36.194444467 Factor a perfect square on the left side: (x + 5.833333335)(x + 5.833333335) = 36.194444467 Calculate the square root of the right side: 6.016181884 Break this problem into two subproblems by setting (x + 5.833333335) equal to 6.016181884 and -6.016181884.Subproblem 1
x + 5.833333335 = 6.016181884 Simplifying x + 5.833333335 = 6.016181884 Reorder the terms: 5.833333335 + x = 6.016181884 Solving 5.833333335 + x = 6.016181884 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = 6.016181884 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = 6.016181884 + -5.833333335 x = 6.016181884 + -5.833333335 Combine like terms: 6.016181884 + -5.833333335 = 0.182848549 x = 0.182848549 Simplifying x = 0.182848549Subproblem 2
x + 5.833333335 = -6.016181884 Simplifying x + 5.833333335 = -6.016181884 Reorder the terms: 5.833333335 + x = -6.016181884 Solving 5.833333335 + x = -6.016181884 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = -6.016181884 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = -6.016181884 + -5.833333335 x = -6.016181884 + -5.833333335 Combine like terms: -6.016181884 + -5.833333335 = -11.849515219 x = -11.849515219 Simplifying x = -11.849515219Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.182848549, -11.849515219}
| 1/5-x=1/8x | | 220x+25y=1000 | | -5z-3z=z+1-4z | | -0.9x+9.67=-0.5x+9.27 | | 5/6-8/12 | | -0.6+8.63=-0.8+3.83 | | 7x+30=5x+26 | | -6x-10=-2x | | 0.4x-0.6x+4=-5 | | 7x(4/2)/(3x5-1) | | y=24/4x | | 7x-1=6x+8 | | 1+12x=-4x-16+15 | | 4x-6x-1=8-11x-12 | | (x-1)(2x+5)(x+6)=0 | | 3(2x-1)(5x+2)=2(15x+6)(6x-1) | | (3x-1)(5x+12)-(5-2x)(3x-1)=0 | | -25/-4 | | 1X-2x/2 | | (27)/(x)=x^2 | | 2x+123=100 | | =3(2x-5)-2(6+7x) | | =4(x-3)-2(x-4) | | =5y-2(y+4) | | 9x^2-99x-100=10 | | 9x^2-99x-100=0 | | =10p-4(2p-5)+4 | | (x/y)=(1.2/2) | | 3x^2-2000x+2500000=0 | | 4+8x=14+3x | | 8-2y-4+5y= | | y=52sqrtx |